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A B S T R A C T   

Skin-inspired electronic devices that can store and retain impressions of sensory information after the removal of 
external stimuli are showing great significance for artificial sensory systems. Here, a single GaN microwire-based 
piezotronic sensory memory device (SMD) is presented to sense and memorize the impressions of tactile infor-
mation. The SMD is capable to be programmed into a high resistance state by inputting external strain, and 
reversibly erased back to the low resistance state with an electrical voltage. Due to the piezotronic effect, the 
piezo-potential induced by compressive strain would cause the dissolution/redistribution of conductive channels 
of nitrogen vacancies in the bamboo-shaped GaN microwire. Furthermore, the SMD array demonstrates a distinct 
spatial mapping of external strain sensing and retaining with the operations of strain program and electrical 
erase. The single micro/nanowire-based sensory memory device will have great applications in the field of tactile 
sensation, touchable haptic technologies, and bio-realistic artificial intelligence systems.   

1. Introduction 

Sensory memory can automatically store and retain impressions of 
sensory information that is perceived by receptors in the human body 
after the removal of external stimuli [1]. It helps to keep an accurate and 
very brief buffer for the stimuli of the five senses (i.e., sight, hearing, 
smell, taste, and touch) into the brain, which is very essential for us 
interacting with the surroundings. Among the five senses, the sense of 
touch is of great importance to allow us to possess tactile perception and 
feedback in virtual and real environments [2], due to the sensation 
functionalities of human skin. Many kinds of electronic devices have 
been developed to emulate the sense of touch, which is also called 
electronic skin (or e-skin) [3–5], based on the mechanisms of capaci-
tance [6,7], piezoresistivity [8,9], piezoelectricity [10,11], and tribo-
electricity [12,13]. Commonly, those reported devices only provide the 

tactile sensation, however, not capable to retain the memory/impression 
of tactile information. Learning from the biological sensory memory, it is 
very necessary to develop e-skin with the capabilities of tactile percep-
tion and storage. Zhu et al. reported a haptic memory device composed 
of a resistive pressure sensor (micro-structured PDMS film embedded 
with silver nanowires) and a resistive switching memory cell (meta-
l-insulator-metal architecture with SiO2) to provide the retaining of 
pressure information [14]. Similarly, Chen et al. also used the combined 
device with a resistive switching memory cell (metal-insulator-metal 
architecture with Al2O3) and a resistive image sensor (In2O3 based UV 
sensor) to construct an artificial visual memory system [15]. However, 
those devices are very complicated in integration, and inevitably limit 
the large-scale array applications. Indeed, a simple device that can sense 
and memorize the tactile information remains a great challenge for 
artificial sensory systems. 
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By coupling two effects of piezoelectricity and semiconductor, the 
piezotronic micro/nanowire semiconductors, e.g., ZnO [10,11,16], and 
GaN [17–19], are demonstrated to have the capability of pressure or 
strain sensing with high sensitivity, high resolution, and large-scale 
fabrication/integration [10,11,16,20,21]. According to the piezotronic 
effect, the introduced pressure or strain allows the semiconductor to 
produce piezoelectric polarization charges at the interface, which will 
tune the interface barrier or control charge carrier transport character-
istics [20,21]. In addition, many types of piezotronic devices are also 
reported, including sensors [22,23], LEDs [11,24,25], solar cells [26, 
27], memristors [19,28], HEMTs [29,30], topological-insulator-based 
[31,32], and synapses [33]. And thus with expectations, the piezo-
tronic device will have potential applications for tactile information 
sensation and storage. 

Here, we present a GaN microwire-based piezotronic sensory mem-
ory device (SMD) that can memorize the input strain in resistance state 
after the strain ceased, and also be reversibly erased with electrical 
voltage bias. The impressions of tactile information are easily retained in 
the single micro/nanowire-based device configuration, leading to the 
reduction of the complexity of the artificial sensory memory systems. 
Upon the piezotronic effect, the piezo-potential generated by the applied 
compressive strain is used to induce the formation of nitrogen vacancies 
that could act as electron traps to form/dissolve electron transport 
channels at the knots of the bamboo-shaped GaN microwire. The mul-
tiple resistance states are tuned in response to different compressive 
strain. Furthermore, the sensory memory mapping illustrations of the 3 
× 3 SMD array are demonstrated for the external strain sensing and 
retaining with the operations of strain program and electrical erase. 

2. Results and discussion 

Fig. 1 illustrates the novel concept of GaN microwire-based SMD. The 
biological sensory memory system in human skin is typically composed 
of receptors and memory units, as schematically shown in Fig. 1a. Upon 
an external force applied on the skin, the mechanical stimulation is 
perceived by the sensory receptors and retained the tactile impression by 
the memory unit after the initial stimulation has ceased, and finally 
processed by the central nervous system. As inspired by the biological 
model, an electronic device based on GaN microwire is introduced to 
demonstrate the functionalities of the sensory memory system. The 
equivalent circuits of the biological model and the SMD are shown in 
Fig. 1b. In contrast to the combination of a receptor and a memory unit, 
the artificial sensory memory can be simplified into an individual device 
by using a single piezotronic micro/nanowire (e.g., GaN microwire). 

The schematic illustrates that the SMD can be pinched by a hand, 
indicating the strain program operation, as illustrated in Fig. 1c. The 
GaN micro/nanowires were synthesized by chemical vapor deposition 
(CVD) with liquid Ga source precursor and 50 sccm NH3 flow at a high 
temperature of 950 ◦C for 8 h. The structural morphology of GaN is 
observed by a scanning electron microscopy (SEM) (Fig. 1d), and the 
corresponding elemental profiles of Ga and N are captured by the 
energy-dispersive X-ray spectroscopy (EDS) mapping (Fig. 1e and f). 
Thus it can be seen that the GaN microwire has a bamboo-shaped 
structure. From Fig. 1e and f, the N distribution seems a little different 
from the Ga distribution, especially in the bamboo-shaped knot regions 
(although the contrast not so clear). As liquid Ga as the source, the GaN 
micro/nanowire would grow along the c-axis with the rapid nitridation 
of Ga by dissociated ammonia at the high temperature [19]. During the 
process of growth, the vapor pressure of Ga could alter and induce some 
Ga-rich regions, leading to further radial formation of the 

Fig. 1. GaN micro/nanowire-based piezotronic sensory memory device (SMD). (a) Schematic illustration of the sensory memory system in human skin, which is 
composed of receptors and memory units. Upon an external force applied on the skin, the mechanical stimulus is perceived by the sensory receptors with retaining 
the sensory impression, and processed by the central nervous system. (b) The equivalent circuit of the SMD. A receptor and a memory unit are connected in series to 
form the sensory memory in human skin, which can be simplified into an individual device by using a single micro/nanowire. (c) Schematic illustration for GaN 
microwire-based SMD pinched by a hand. (d) Scanning electron microscopy (SEM) image of a single GaN microwire, which shows the bamboo-shaped structure. 
Scale bar: 2 μm. (e,f) Energy-dispersive X-ray spectroscopy (EDS) mapping of Ga and N, respectively. 
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bamboo-shaped knots (i.e., nitrogen deficiency regions). In addition, the 
fabrication process of the SMD is introduced as follows: the single GaN 
micro/nanowire is transferred onto a polystyrene (PS) substrate, and 
source/drain electrodes are prepared at the two ends of the GaN 
microwire with silver paste connection into Cu wires. 

The as-fabricated SMD has good flexibility, and can be well applied 
to strain program and electrical erase operations. Fig. 2a illustrates the 
strain program (or write) operation of the SMD. The operation contains 
three steps: original state, strain program, and release state. Upon 
bending, the SMD is programmed (or written) by loading a compressive 
strain. And then, the SMD is capable of retaining the resistance state 
after releasing the strain, which corresponds to the basis for the 

biological sensory memory. The DC I–V characteristics of the SMD are 
measured by a Keysight B1500A semiconductor device parameter 
analyzer. Fig. 2b shows the typical I–V characteristics of the SMD with a 
strain program operation. By loading a compressive strain of − 1.57%, 
the resistance of the SMD exhibits a pronounced transition from a low 
resistance state (LRS) of 10-kΩ-scale to a high resistance state (HRS) of 
100-MΩ-scale. After releasing the compressive strain, the I–V curves 
show no obvious changes when compared to the one under strain, 
indicating the good performance for memorizing the impressions of 
tactile information in the SMD. Furthermore, the typical I–V charac-
teristics of the SMD with an electrical erase operation is shown in Fig. 2c. 
The SMD is firstly programmed into a HRS of 100-MΩ-scale (e.g., 877.2 

Fig. 2. Electrical performances of the 
SMD. (a) Schematic illustration for the 
strain program operation of the SMD. 
(b) I–V characteristics of the SMD in 
strain program, including original state, 
loading a compressive strain of − 0.57%, 
and strain release state. (c) I–V charac-
teristics of the SMD in electrical erase at 
a compliance current (Icc) of 1 μA. The 
inset is the I–V characteristics at the 
voltage sweep from − 0.5 V to 0.5V for 
the cases before and after electrical 
erase. (d) Endurance performance of the 
SMD for 100 cycles with strain program 
of − 1.57% and electrical erase of 3 V. 
(e) Retention performance of the SMD 
with multilevel states (i.e., three stain 
states) at a read voltage (Vread) of 0.5 V.   

Fig. 3. Write/erase operations of the SMD. (a) Output currents response to 0.1 Hz square-wave input voltage biases during the serial operations including resistance 
read, strain write, and electrical erase. Read voltage bias is 0.5 V, and electrical erase voltage bias is 6 V. (b) The enlarged view at the cyan dashed triangle in (a), 
showing the detailed changes of the output current with applying three different compressive strain (− 0.4%, − 0.6%, and − 0.8%). 
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MΩ) after inputting and releasing the compressive strain. And then, the 
HRS can be erased back into the LRS of 10-kΩ-scale (e.g., 14.0 kΩ), when 
applying the voltage sweeps from 0 to 3 V. It is remarkable that the SMD 
can be programmed into the HRS under the compressive strain and also 
erased back to the LRS again in a highly reversible manner, indicating 
the good performance of artificial sensory memory. Specifically, the 
good endurance performance of the SMD is well demonstrated for 100 
cycles under the repeatable operations including strain program of 
− 1.57% and electrical erase voltage of 3 V, as shown in Fig. 2d. In 
addition, compared with the very brief retention (<1 s) of the biological 
sensory memory, the SMD exhibits a better retention performance over 
300 s with multilevel states (e.g., three strain states at 0%, − 1.03%, and 
− 1.34%), as shown in Fig. 2e. 

To illustrate the continuous read/write/erase operations in temporal 
scale, a computer-controlled measurement system composed of a func-
tion generator (DS345, Stanford Research Systems), a low-noise current 
preamplifier (SR570, Stanford Research Systems), and a GPIB controller 
(GPIB-USB-HS, NI 488.2) is used to conduct electrical measurement of 
output current with square-wave input bias. And a typical SMD in the 
same batch is chosen as the device under test. Fig. 3a clearly shows the 
sequential read/write/erase operations of the SMD. The output currents 
response to 0.1 Hz square-wave input voltage biases during the serial 
operations including resistance read, strain write, and electrical erase. In 
the beginning, the resistance of the SMD is at a LRS of 60 kΩ when 
applying a read voltage bias of 0.5 V. And then, the resistance transits 
into a HRS of 600 kΩ after a load of a compressive strain of − 0.8% at 
steps. Consequently, the resistance can transit back to the LRS of 60 kΩ 
by applying a large voltage bias of 6 V. Fig. 3b shows the detailed 
changes of the output current by applying three different compressive 
strain (i.e., − 0.4%, − 0.6%, and − 0.8%) and then releasing the strain. 
The resistance of the SMD shows a step-like transition into HRS with the 
increase of the compressive strain, and the HRS remains to be holding 
even after releasing the strain. 

Based on the double-logarithm I–V characteristics of the SMD in 
Fig. 4a, the trap-controlled space-charge-limited-conduction (SCLC) 
theory [34,35] could be used to elucidate the working mechanism of the 

SMD. Commonly, the trap-controlled SCLC consists of three regions, 
including Ohmic region (I ~ V), Child’s square law (trap-unfilled SCLC) 
region (I ~ V2), and the current increase in the high field (trap-filled 
SCLC) region [35]. In the HRS (blue curve in Fig. 4a), the three regions 
with evident slope difference well agree to the trap-controlled SCLC 
theory. In the LRS (orange curve in Fig. 2c), Ohmic conduction would be 
induced by the formation of nitrogen vacancies (VN) due to the applying 
of a large voltage bias. Actually, the knot region of the bamboo-shaped 
GaN microwire filled with a large amount of VN (i.e., nitrogen defi-
ciency) is considered as a variable barrier [19], and the VN acting as trap 
states contributes to the transport of electrons [36,37]. Fig. 4b illustrates 
the calculated piezo-potential distribution of the hexagonal GaN 
microwire (length = 5 μm, diameter = 1 μm) under a compressive strain 
of − 0.5%. The induced piezo-potential might be as high as 2.5 V. As it is 
previously reported, the introducing electric field could induce the 
formation of vacancy [38]. The movement of VN under electric field is 
probably responsible for the switching phenomenon [39]. And conse-
quently, the piezo-potential would effectively induce the formation (or 
dissolution) of conductive channel of VN in the GaN microwire by the 
applied compressive strain, which would be different from the common 
piezotronic modulation at the interfacial Schottky barrier or p-n junc-
tion [20,21]. 

It is remarkable that the working mechanism of the SMD is attributed 
to VN acting as electron traps for the formation/rupture of conductive 
channel with electrons trapping and detrapping procedures. Fig. 4c 
shows the simplified equivalent circuits of the GaN microwire in the 
SMD to indicate the corresponding resistors in the schematic illustra-
tions of Fig. 4d–f. Among them, the knot region can be considered as a 
variable resistor (RV), which would principally affect the transport of 
electrons. Furthermore, the dynamic evolutions of conductive channel 
of VN are schematically shown in Fig. 4d–f. Initially, a large amount of 
trap states (e.g., VN) would form a large conductive channel in the GaN 
microwire (probably at the knots), thus leading to the Ohmic conduction 
behavior (Fig. 4d). Upon a load of a compressive strain, the induced 
piezo-potential would reduce the thickness (or rupture) of the conduc-
tive channel, resulting in the resistance transition into HRS (Fig. 4e). 

Fig. 4. Working mechanism of the 
SMD. (a) Double-logarithm I–V charac-
teristics of the SMD, indicating the 
space charge limited conduction (SCLC) 
mechanism. (b) Finite element analysis 
for the piezo-potential distribution of 
the hexagonal GaN microwire (length =
5 μm, diameter = 1 μm) under a 
compressive strain of − 0.5% (COMO-
SOL Multiphysics). (c) The simplified 
equivalent circuits of the GaN micro-
wire. The resistors (R1 and R2) indicate 
the smooth crystal regions of the GaN 
microwire, while the variable resistor 
(RV) corresponds to the knot region. 
Upon loading a voltage on the device, 
the current can flow from the drain to 
the source, and certainly pass across the 
knot regions. (d–f) Schematic illustra-
tions for the working mechanism of the 
SMD, including (d) original state, (e) 
strain program, and (f) electrical erase. 
Nitrogen vacancies (VN) could act as 
electron traps to form/dissolve electron 
transport channels at the knots of the 
bamboo-shaped GaN microwire.   
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After releasing the compressive strain, the SMD can also retain the 
resistance at HRS. Furthermore, by applying a critical voltage bias, the 
conductive channel would grow into the large one again, leading to the 
resistance transition back to LRS (Fig. 4f). In short, the conductive 
channel composed of VN will become thinner (or rupture) under the 
operation of strain program, while it will grow thicker under the oper-
ation of electrical erase. And hence, the SMD can well perform in a good 
reproducible manner under the operations of strain program and elec-
trical erase, also showing the promising potential for human-machine 
interfaces and artificial sensory systems applications. 

In order to illustrate the touchable haptic memory panel, a SMD 
array with 3 × 3 pixels is fabricated to demonstrate the capability of 
mapping and memorizing strain distribution after the removal of the 
strain. The schematic illustrations for the operations of strain program 
and electrical erase are shown in Fig. 5a and b, respectively. In the 3 × 3 
SMD array panel, a finger makes a strain on a pixel of the array to do the 
write operation, leading to the distinct spatial mapping of external 
strain; and the electrical erase operation is applied by giving a voltage 
bias on the device. As shown in Fig. 5c, the SMD array can clearly record 
the applied strain and its corresponding position/distribution, i.e., a 
strain of − 1.2% loaded at the center of pixels. Moreover, the SMD array 
is also devoted to memorizing the strain mapping even after one day or 
one week with small variation or decay, as illustrated in Fig. 5d and e, 
respectively. In addition, the strain mapping can further be erased by 
voltage sweep (Fig. 5f), and reprogrammed with strain loaded on the 
SMD (Fig. 5g). As described above, the reconfigurable SMD array ach-
ieves the capability of strain information mapping and retaining as the 
recess of the strain or voltage in multi-cycle operations. 

3. Conclusions 

In summary, the flexible GaN microwire-based piezotronic sensory 
memory device is demonstrated to be capable of strain sensing and 
memorizing, which contributes to the reduction of the complexity of the 
artificial sensory memory systems. The SMD can be programmed into 
HRS by applying external strain in multi-states, and also be reversibly 

erased with electrical voltage bias. The working mechanism of the SMD 
is attributed to nitrogen vacancies acting as electron traps to form/ 
dissolve electron transport channels at the knots of the bamboo-shaped 
GaN microwire. Due to the piezotronic effect, the compressive strain is 
used to induce the formation of nitrogen vacancies in the GaN micro-
wire, thus leading to the thickness reduction (or rupture) of the 
conductive channel (i.e., resistance transition into HRS). Moreover, the 
sensory memory mapping illustrations of the 3 × 3 SMD array are 
demonstrated for the external strain sensing and retaining with the 
operations of strain program and electrical erase. The SMD enables the 
retaining of touch and haptic experiences in a single micro/nanowire- 
based sensory memory system, and will contribute to the development 
of tactile sensation and touchable haptic technologies, promoting ad-
vances in bio-realistic artificial intelligence systems. 
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